Search results for "quenching mechanism"

showing 2 items of 2 documents

Nitrogen and sulfur co-doped carbon nanodots toward bovine hemoglobin: A fluorescence quenching mechanism investigation

2018

A deep understanding of the molecular interactions of carbon nanodots with biomacromolecules is essential for wider applications of carbon nanodots both in vitro and in vivo. Herein, nitrogen and sulfur co-doped carbon dots (N,S-CDs) with a quantum yield of 16% were synthesized by a 1-step hydrothermal method. The N,S-CDs exhibited a good dispersion, with a graphite-like structure, along with the fluorescence lifetime of approximately 7.50 ns. Findings showed that the fluorescence of the N,S-CDs was effectively quenched by bovine hemoglobin as a result of the static fluorescence quenching. The mentioned quenching mechanism was investigated by the Stern-Volmer equation, temperature-dependent…

NitrogenQuantum yieldchemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesHemoglobinsStructural BiologyQuantum DotsAnimalsMolecular Biologybovine hemoglobinQuenching (fluorescence)010401 analytical chemistryFluorescenceSulfurAcceptorNitrogenCarbon0104 chemical sciencesquenching mechanismchemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoCattlefluorescenceDispersion (chemistry)CarbonSulfurnitrogen and sulfur co-doped carbon dotsJournal of Molecular Recognition
researchProduct

Insight into the defect-molecule interaction through the molecular-like photoluminescence of SiO2 nanoparticles

2016

Luminescence properties due to surface defects in SiO2 are the main keystone with particles that have nanoscale dimensions, thus motivating their investigation for many emission related applications in the last few decades. A critical issue is the role played by the atmosphere that, by quenching mechanisms, weakens both the efficiency and stability of the defects. A deep knowledge of these factors is mandatory in order to properly limit any detrimental effects and, ultimately, to offer new advantageous possibilities for their exploitation. Up to now, quenching effects have been interpreted as general defect conversion processes due to the difficulty in disentangling the emission kinetics by…

Materials sciencePhotoluminescenceCONVERSION PROCESSMOLECULAR ENVIRONMENTSURFACE DEFECTSGeneral Chemical EngineeringNanotechnologyLUMINESCENCE PROPERTIES02 engineering and technology010402 general chemistry01 natural sciencesNANOSCALE DIMENSIONSMOLECULESCARBON DIOXIDEDeep knowledgeNANOPARTICLESMoleculeSilica nanoparticles Photoluminescence Quenching Surface defects Defect-molecule interactionLUMINESCENCE INTENSITYDEFECT INTERACTIONSQuenching (fluorescence)QUENCHING MECHANISMSSettore FIS/01 - Fisica SperimentaleGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMOLECULE INTERACTIONSSio2 nanoparticlesLUMINESCENCELIGHT EMISSION0210 nano-technologyLuminescenceQUENCHING
researchProduct